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Preface

The original idea for this thesis was to find a characterization theorem for the
class of safe contractions over theories, a problem which has been open since
Alchourrón and Makinson defined them and gave a construction-to-postulates
result in 1985 [4]. After being unable to extend the technique Rott used in
his result for regular and virtually connected safe contractions over theories
[20], I attempted to reverse any of several steps Hansson used to redefine safe
contractions in [14]. As explained in this thesis, this is impossible at each step.

I have been unable to solve the original problem and provide an axiomatization,
but I do have several interesting partial results. Unfortunately, almost all of
these are negative, indicating that the behavior of kernel contractions in general
and safe contractions in particular is much more complicated than previously
thought. In addition to my own work, I have also collected and organized all
the results in the Alchourrón-Gärdenfors-Makinson tradition which relate to
characterization.

It is my hope that this thesis will be useful to the next person who studies the
only major class of AGM operators still lacking a characterization theorem, and
that it inspires future work on the other subclasses of kernel contractions which
have to this point gone unstudied.
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Chapter 1

Motivation

How does a believer change his beliefs? How can a theory (in the logi-
cal/mathematical sense) become a different theory? What guidance is there
for how to update a database? These questions are the subject of the field var-
iously called belief dynamics, theory change, or database updating, but most
commonly referred to as belief revision.

The modern research program in belief revision was started following the
landmark 1985 paper by Alchourrón, Gärdenfors, and Makinson [1] in which
they introduced a type of belief change called partial meet contractions and
gave a list of properties called the Gärdenfors postulates, then showed that the
former notion was characterized by the latter. That is, every use of the partial
meet contraction method to change beliefs has exactly the properties set out in
the list of Gärdenfors postulates, and every change of belief which has those
properties can be represented using the partial meet contraction method.

Since then, and in large part because of this cornerstone result, the vast majority
of research in the field has focused on partial meet contraction or similar ideas,
but there have been two other types of contraction which have received atten-
tion: the entrenchment contractions Gärdenfors and Makinson introduced in
1988 [8] and the safe contractions Alchourrón and Makinson introduced in an-
other 1985 paper [4]. A characterization result for entrenchment contractions is
also known, but many of the properties of safe contractions remain mysterious.

However, safe contractions themselves are by far the clearest philosophically
and the most intuitive of the three types of changes. When using safe contrac-
tion, a believer needs only to have a preference structure called a “hierarchy”
on his beliefs which indicates “comparative willingness to stop believing.” For
example, I may prefer dropping the belief that I am hungry over dropping the
belief that I have a stomach, and this preference may be used in determining
how my beliefs should change when I stop experiencing pain in my torso. The
only property this preference structure must have is that it has no (finite) cycles;
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2 CHAPTER 1. MOTIVATION

that is, there is no (finite) list of beliefs that I hold for which I prefer losing each
belief to the next one in the list and also prefer losing the last one to the first.

By contrast, partial meet contractions have a rather questionable philosophi-
cal status. Believers are required to make choices using “selection functions”
amongst sets of their beliefs, which it seems strange to do—even unconsciously.
Entrenchment contractions are not much better; they have the benefit, like
safe contractions, of also only requiring preference structures (here called “en-
trenchment relations”) on beliefs, but there are many more properties these
preferences must adhere to. For one thing, preferences must follow logical im-
plication. It is clear already that neither of these types of contractions describe
how believers actually behave. At the same time, whether or not these are
reasonable restrictions on how believers should behave is a subject of much
debate.

Moreover, partial meet contractions and entrenchment contractions are diffi-
cult to iterate—there is no straightforward way for a believer to make another
change to his beliefs after the first change using these methods. This is because
the selection function generating a partial meet contraction and the entrench-
ment relation generating an entrenchment contraction must be related in certain
precise ways to a believer’s current beliefs, and they simply will fail to do so
after those beliefs change. By contrast, the hierarchies behind safe contractions
can continue to work for as many changes as desired.

For these reasons, the properties of safe contractions should be explored, and
characterization results like the ones for partial meet and entrenchment con-
tractions need to be found. The project of this thesis is to use the “kernel
contraction” notion Hansson introduced in [14] to explore the formal proper-
ties of safe contractions and some other closely related types of contractions.

In the next chapter the existing literature on characterizing the properties of
various types of changes in the Alchourrón-Gärdenfors-Makinson tradition is
reviewed. Familiarity with modern logic but no background in belief revision
is assumed. This is a technical thesis and its focus is not on the philosophical
plausibility or motivation for each particular formal result, but periodic sections
throughout that chapter titled “Philosophical notes” will offer pointers to rele-
vant literature on philosophical problems relating to the formal constructions
introduced.

After the literature is reviewed and the reader is acquainted with the current
state of the field, I present the new results I have obtained. These, rather
unfortunately, show that the situation is even more complex than previously
thought. The thesis closes with a summary of the current state of affairs in AGM-
style belief revision, and suggestions for further work, since many properties
of safe contractions remain to be explored.



Chapter 2

Background

As noted, it will be useful to first review the current state of the literature—this
will allow the thesis to be self-contained and readable by anyone with a basic
understanding of logic. My own results do not make much sense stripped of
context.

I shall give a short overview of the basics of the Alchourrón-Gärdenfors-
Makinson (AGM) approach to belief revision which originated in [1], define
and construct the three major types of contraction operations traditionally con-
sidered, and mention all of the important known results relating to their char-
acterization and classification.

The majority of this presentation can be found in Sven Ove Hansson’s book
[16], which is the standard reference textbook in belief revision. Not all of
the following is present there, though, and the results which do appear are
scattered throughout the text (for example, the difference made explicit here
between Rems and RemSets is left implicit and not brought out well). Even
for the results which appear there, I will favor referencing the original papers
where applicable and available.

2.1 Preliminaries

For the rest of this thesis, let L be a formal language with countably many
propositional variables p, q, r, . . . and a complete set of logical connectives ∧, ∨,
→,↔, ¬, and⊥. I will use α, β, γ, . . . as metasyntactic variables ranging over the
well-formed formulae in L, and A,B,C, . . . will range over sets of these well-
formed formulae. By abuse of notation, let L also be a classical propositional
logic over the language L.
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4 CHAPTER 2. BACKGROUND

2.1.1 Consequence operations and change operations

We are now in a position to define the following very useful notion, originally
due to Tarski and treated quite well in Hansson’s text.

Definition 2.1.1 ([16], p. 26). A consequence operation on L is a function Cn :
P(L)→ P(L) such that for all subsets A,B of L

inclusion A ⊆ Cn(A),

monotony if A ⊆ B, then Cn(A) ⊆ Cn(B),

iteration Cn(A) = Cn(Cn(A)).

Moreover, we stipulate a few additional requirements. Namely, for all subsets
A and sentences α and β:

supraclassicality if α is derivable from A in L, then α ∈ Cn(A),

deduction β ∈ Cn(A ∪ {α}) if and only if α→ β ∈ Cn(A),

compactness if α ∈ Cn(A), then there is a finite A′ ⊆ A such that α ∈ Cn(A′).

We will also write A ` α for α ∈ Cn(A).

Any operation on sets of well-formed formulae in L which satisfies the above
six principles is a consequence operation. Using this concept we are able
to abstract away from the particular features of one method of deduction and
simultaneously handle many notions of consequence. Every result in this thesis
is relative to a consequence operation, so at this time fix a particular operation,
call it Cn.

We can now define how we will formally represent epistemic objects and states.

Definition 2.1.2. Let α be a sentence inL; α is a belief. Let A be a set of sentences
in L; A is a belief base (or just a set). If A is closed, i.e. A = Cn(A), A is a belief set
or theory.

The “belief set” and “belief base” terminology is somewhat unfortunate, be-
cause “belief set” implies closure while the more common term “set” covers
both cases. Since the terms “set” and “theory” are familiar to logicians of all
types, I will favor them.

In the AGM tradition, sentences are treated as the basic epistemic objects,
and theories are treated as epistemic states. There are, of course, well-known
objections to this characterization. Firstly, why should belief states merely
contain beliefs and nothing else? It seems that an agent’s dispositions toward
his or her beliefs also form part of the belief state. This has intimate connections
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with iterated belief changes, and will be revisited in the philosophical sections
of this chapter.

Even accepting that belief states are simply collections of beliefs themselves,
the deductive closure requirement of theories presents its own problems It is
clear no one actually believes all that closed belief sets require of us (this is the
so-called “problem of logical omniscience,” for example, no one believes all the
mathematical truths), and therefore this representation of a belief state cannot
be used in any descriptive analysis of what believers actually do. Furthermore,
all theories have infinite cardinality, and therefore cannot be used directly in
any computational implementation of belief change.

At the same time, closure is a natural condition to require: any statement
which is derivable in one step from something we believe it intuitively seems
that we must believe. The philosopher Isaac Levi has made interesting remarks
in which he gets around this problem by interpreting belief sets as epistemic
commitments rather than epistemic states strictly speaking, for more on this
see [17] and [18]. Others working in the field, in particular Hansson, prefer
thinking of our epistemic states as belief bases which are in general not closed.
This approach allows one to privilege certain beliefs as “foundational” (i.e.
actually present in the belief base) and leave the others as merely “derived.”
For more on this idea see Hansson’s writings, in particular [11] and [15]. The
debate on the status of logical closure, normatively speaking, remains quite
open.

These philosophical issues are outside of the scope of this formal thesis, so I will
report and provide results both for the case of arbitrary sets and the restricted
case of logically closed theories.

Now that we have representations of belief states, we need to represent changes
to those states.

Definition 2.1.3. Let · be a function · : P(L) × L → P(L) that takes a set and a
sentence and returns a new set. · is a (global) belief change operation. Similarly, let
A be a set and · : L → P(L) a function, dependent on A, which takes a sentence
and returns a new set. · is a belief change operation for A.

Since they are only functions of one argument that depend on a belief state,
non-global operations of belief change should be written ·A(α), but they are
traditionally written A ·α and I will follow tradition and write all operations in
this thesis in infix notation.

This distinction between binary operations of a global sort and unary operations
for particular sets is a deeply important one and one that is too often overlooked
in the AGM literature. To quote Hans Rott, even in Alchourrón, Gärdenfors, and
Makinson’s classic paper [1], they “sometimes use [belief change operations]
as binary functions taking various belief sets as their first argument, but this is
not in the spirit of what they actually do,” ([21], p. 260). The problem is that
sometimes it is impossible to describe changes of belief as a function with two
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inputs that produces reasonable outputs, but it is much easier to describe how
a particular belief state can change as a function of one input. Again, this will
be revisited later in the philosophical notes sections on iteration.

Traditionally, three kinds of belief change operations are considered: Expansions
are the addition of a new belief to a belief state, contractions are the removal of
a belief from a belief state, and revisions are a general form of change from one
belief state to another.

Expansions are by far the most straightforward. For expansion, in the case of
theories we will follow Levi, simply adding by brute force the new belief and
closing under consequence.

Definition 2.1.4 ([17]). A belief change operation + is the expansion operation
(for theories) if and only if for all theories A and sentences α we have that
A + α = Cn(A ∪ {α}).

Notice that this actually is a two-place function, and provides a way to charac-
terize adding a belief to any belief state at all.

Of course, this only makes sense if we are restricting our epistemic states to
theories, as Levi does. In the more general case of (possibly non-closed) sets,
we simply add the belief and do not close.

Definition 2.1.5. A belief change operation + is the expansion operation (for sets
in general) if and only if for all sets A and sentencesαwe have that A+α = A∪{α}.

The same symbol is used for both; when we are concerned only with theories
we will use the closing definition, in the general case we will use the non-closing
definition. This will be obvious from context.

Let us assume for a moment we understand the notion of contraction. The
following says that this is all we need to understand in the current framework:

Definition 2.1.6 (Levi identity). Let÷ a contraction operation be given. We may
define the associated revision operation ∗ : P(L) × L → P(L) in the following
way: for all sets A and sentences α, A ∗ α = (A ÷ ¬α) + α.

The Levi identity says that whenever we need to revise by a new belief α, we
may first contract by its negation, getting rid of any possibly contradictory
beliefs, and then expand by α. This is also controversial—many ask, “When do
we ever purely lose a belief, without gaining a new one?” but this discussion
is also outside of the scope of a technical thesis. The lack of examples of
“pure” contractions, losses of belief without any new beliefs arising, is of central
importance to the “revision equivalence” objection discussed in 2.4.2. For an
introduction to the Levi identity in the AGM framework, see [3].

Using the Levi identity and the simple understanding of expansion, we can
turn our attention entirely to contractions for the remainder of this thesis.
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2.1.2 The Gärdenfors postulates

Since there are many different kinds of contractions, rather than constructing
them now, it is good to first discuss their properties as a way of comparing
various types. Thus we are led to a discussion of the Gärdenfors postulates for
contractions. These originate in Peter Gärdenfors’s [7].

Contractions are supposed to remove beliefs. This means two things: a contrac-
tion should not add any beliefs not already present in the belief state, and a
contraction should actually remove the specified belief.

In all the following, let ÷ be a belief change operation, A a set, and α and β
sentences.

success If α < Cn(∅), then α < Cn(A ÷ α).

inclusion A ÷ α ⊆ A.

These two postulates capture exactly the above two ideas. (Notice that we
cannot ever really remove any of the tautologies, since they will be elements of
Cn(A) for any A by the definition of Cn, so we must put the antecedent on the
postulate of success for any change operation to satisfy it.) Thus, we make the
following definition:

Definition 2.1.7. Let ÷ be a belief change operation. ÷ is a contraction if and
only if it satisfies success and inclusion.

There are a few other properties it seems natural for contraction functions to
have simply from a formal standpoint. Namely, in the case of theories the
results of contractions should be closed, and equivalent sentences should be
contracted equivalently.

closure If A = Cn(A), then A ÷ α = Cn(A ÷ α).

extensionality If α↔ β ∈ Cn(∅), then A ÷ α = A ÷ β.

Notice at this point almost no restrictions limiting the behavior of the contrac-
tion have been given; we can define an operation such that for allα, A÷α = Cn(∅)
and it would satisfy the above postulates. Preventing such extreme behavior
by requiring that a contraction actually preserve beliefs which are in some way
“unrelated” is the role of vacuity and recovery.

vacuity If α < Cn(A), then A ÷ α = A.

recovery A ⊆ (A ÷ α) + α.
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Vacuity requires that if one does not believe the proposition being contracted
from, one should not change one’s beliefs, which seems intuitive and forbids
the extreme operation given above. However, as noted in Section 2.4.2, the
five postulates given above (excluding recovery) are still too permissive. No
restrictions other than closure have been placed on the action of the contraction
for sentences in the theory.

Recovery requires that if one first contracts by a belief and then expands by
it, all of one’s original beliefs are again present. On first reading it may be
plausible, but there have been many philosophical objections raised against
it (see section 2.3 of [16] and [9] for an introductory discussion). As with all
controversial parts of belief revision, the debate is centered on the status of the
normative claim that believers should obey recovery. The related descriptive
claim is easily falsified, and it must be noted that the postulates of belief revision
were not defined from a descriptive standpoint.

However, even in a purely formal context, recovery is harder to remove than
one might think. First, in the case of theories the much-weaker postulate of core
retainment implies recovery, as we shall see in Section 2.5.1. Further, as reported
in Section 2.4.2, Theorem 2.4.12 means that even when no other postulates are
stipulated, recovery is essentially present for all contractions of theories. This
is part of the motivation for Hansson’s work on defining contractions over
arbitrary sets.

These six postulates together are the basic Gärdenfors postulates.

Definition 2.1.8. Let ÷ be a belief change operation. ÷ satisfies the basic
Gärdenfors postulates if and only if it satisfies success, inclusion, closure, ex-
tensionality, vacuity, and recovery.

After a moment’s reflection, one realizes that the only “choices” one may make
when contracting come when contracting conjunctions. Closure and success
together require that when contracting disjunctive beliefs one contracts both
disjuncts as well, and conditional beliefs are of course essentially disjunctive.
However, when contracting a conjunction, one may contract either or both
of its conjuncts. In [1], the following two postulates for conjunctions were
introduced.

conjunctive overlap (A ÷ α) ∩ (A ÷ β) ⊆ A ÷ (α ∧ β).

conjunctive inclusion If α < Cn(A ÷ (α ∧ β)), then A ÷ (α ∧ β) ⊆ A ÷ α.

Conjunctive overlap requires that anything that is retained when contracting
by α and also when contracting by β is retained when contracting by their
conjunction. Conjunctive inclusion requires that if α was not given up when
contracting by α∧ β (and therefore β alone was chosen for removal since one of
them must be), then anything retained in the contraction of the conjunction is
retained when contracting by α.
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These two postulates are also controversial (in a normative context; as de-
scriptive claims they are even more easily falsified than recovery is, being more
complex), but they possess great formal interest, and again I will set discussions
of their plausibility aside.

Definition 2.1.9. Let÷be a belief change operation. ÷ satisfies the supplementary
Gärdenfors postulates if and only if it satisfies conjunctive overlap and conjunctive
inclusion.

Now, with the notion of contraction clarified and some possible properties
of contractions expressed, we can move to constructing particular classes of
contraction operations.

2.2 Partial meet contractions

Partial meet contractions are by far the most well-known class of belief change
operations. They are the subject of the classic AGM paper [1], which is where
the following definitions and theorems originate. There are two central ideas:
remainder sets, and selection functions.

When contracting α from A, success requires the result of the contraction to fail
to imply α. Given inclusion, the result must also not include anything new.
There are two immediate ideas about how these goals can be accomplished:
pick a subset of A that does not imply α to be your result (and try to retain as
much of A as possible), or remove an element out of each subset which does
imply α, and return the result. The latter idea will be discussed in Section 2.5
on kernel contractions, the first idea is the basis for partial meet contractions.

Definition 2.2.1 ([2]). Given a set A and a sentence α, A ⊥ α is the set containing
all inclusion-maximal subsets of A which do not imply α. It is called the
remainder set of A by α, and its elements are the α-remainders of A.

The set of remainder sets of A will be written RemSets(A). (Notice RemSets(A) ⊆
P(P(A)).)

Any of the elements of A ⊥ α are a priori reasonable candidates for the result of
contracting A by α, and in fact in early work on belief revision choice contractions
were studied which simply picked elements of A ⊥ α as their results. Another
idea is to let A÷ α be

⋂
(A ⊥ α), the elements which are preserved under every

choice contraction. This is (full) meet contraction. Partial meet contraction is
a common generalization of these ideas. The unifying structure is that of a
selection function.

Definition 2.2.2 ([1]). Given a set A, a selection function γ for A is a function
γ : RemSets(A)→ P(P(A)) such that for all α

1. If A ⊥ α , ∅, γ(A ⊥ α) is a nonempty subset of A ⊥ α,
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2. if A ⊥ α = ∅, then γ(A ⊥ α) = {A}.

A selection function chooses elements of the remainder set which are preferred
to the others. Notice that it returns a set of equally preferred remainders, not
simply a single preferred remainder.

Definition 2.2.3 ([1]). Let A be a set and γ a selection function for A. The partial
meet contraction on A generated by γ is the operation ∼γ such that for all α we
have A ∼γ α =

⋂
γ(A ⊥ α).

An operation ÷ on A is a partial meet contraction for A if and only if there is a
selection function γ such that A ÷ α = A ∼γ α for all α.

Notice that the study of partial meet contractions is simply the study of selec-
tion functions since there is a clear interdefinability between contractions and
selections.

The following characterization result is the central result in the AGM tradition.

Theorem 2.2.4 ([1]). ÷ is a partial meet contraction for a theory A if and only if it
satisfies the basic Gärdenfors postulates.

To satisfy the supplementary Gärdenfors postulates, additional structure must
be placed on the selection functions.

2.2.1 Relational selections and transitivity

This structure is obtained by generating the selection from a relation. It is well
known from the theory of rational choice that only some choice functions are
“rationalizable,” in that they are coherent with an actor’s preference relations.
Expressing choices in terms of a relation places constraints on the choices, and
similar constraints are at play here.

Definition 2.2.5 ([1]). A selection function γ for A is relational if and only if
there is a relation v on P(A) which generates it. That is, if and only if there is a
relation v such that if A ⊥ α is nonempty then γ selects the elements of A ⊥ α
that are maximal under v, i.e. γ(A ⊥ α) = {B ∈ A ⊥ α|(∀C ∈ A ⊥ α)(C v B)} for
all α.

A partial meet contraction is relational if and only if it is generated by a re-
lational selection function. If a relation has a property, we also say that the
selection function and partial meet contraction generated by that relation have
that property. For example, a transitive relation generates a transitively rela-
tional selection function and a transitively relational partial meet contraction.

Properties of relations which are studied in other branches of logic and mathe-
matics can now be used to define subclasses of relational partial meet contrac-
tions. There are two properties we are particularly interested in:
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transitivity If A v B and B v C, then A v C.

maximizing If A ⊂ B, then A @ B.

Both of these are well-known “rationality constraints” from the theory of ratio-
nal choice, and are equally plausible here. Maximizing turns out to be implied
by transitivity in the case of contractions on theories.

Lemma 2.2.6 ([12]). Let A be a theory and ∼γ a partial meet contraction for A. Then
∼γ is transitively maximizingly relational if and only if ∼γ is transitively relational.

Using this result, we arrive at the other major result of the original AGM paper.

Theorem 2.2.7 ([1]). An operation ÷ on a theory A is a transitively relational partial
meet contraction for A if and only if it satisfies the basic and the supplementary
Gärdenfors postulates.

Now we have models of contractions that characterize the two main sets of pos-
tulates. This is the foundation of the “two-tiered” approach that is a hallmark
of the AGM tradition, and the other types of contractions reviewed here will
generally fit into one of these two tiers. The pattern of a general contraction
based on arbitrary functions satisfying the basic postulates and a specialized
contraction based on relations satisfying the supplementary postulates appears
frequently.

However, all of this work has been done only for contractions on theories. As
noted in an earlier section of this thesis, there are philosophical and compu-
tational objections to this restriction to theories, so it is important to see how
partial meet contractions behave on arbitrary sets which may fail to be closed.

2.2.2 Partial meet contractions on arbitrary sets

Hansson studied the behavior of partial meet contractions on arbitrary sets in
his 1992 [10], finding a characterization result which occupies the central place
in the study of contractions on sets that the AGM results just reported occupy
in the study of contractions on theories.

The postulates satisfied are of course slightly different. Uniformity is a strength-
ened version of extensionality, and relevance has connections to vacuity, clo-
sure, and recovery.

uniformity If for all A′ ⊆ A it is the case thatα ∈ Cn(A′) if and only if β ∈ Cn(A′),
then A ÷ α = A ÷ β.

relevance If β ∈ A and β < A ÷ α, then there is A′ such that A ÷ α ⊆ A′ ⊆ A and
that α < Cn(A′) but α ∈ Cn(A′ ∪ {β}).
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These postulates and the postulates defining contractions produce a character-
ization result.

Theorem 2.2.8 ([10]). ÷ is a partial meet contraction for A if and only if ÷ satisfies
success, inclusion, relevance, and uniformity.

It is clear that the class of partial meet contractions on arbitrary sets is strictly
larger than those on theories, simply because of that restriction. Therefore,
these postulates imply but are not implied by the basic Gärdenfors postulates.
What is less clear is how exactly this implication comes about. Here are some
helpful lemmata.

Lemma 2.2.9 ([16]). Let ÷ be an operation on an arbitrary set A.

1. If ÷ satisfies uniformity, then ÷ satisfies extensionality.

2. If ÷ satisfies relevance and inclusion, then ÷ satisfies vacuity and closure.

3. If A is a theory and ÷ satisfies relevance, then ÷ satisfies recovery.

Corollary. Let÷ be an operation on a set A. If÷ satisfies success, inclusion, uniformity,
and relevance, then ÷ satisfies the basic Gärdenfors postulates except recovery. If in
addition A is a theory, ÷ also satisfies recovery.

Note that the assumption in the corollary that A is closed is only used to obtain
recovery. For the other direction, that assumption is needed in every case.

Lemma 2.2.10 ([16]). Let ÷ be an operation on a theory A.

1. If ÷ satisfies extensionality and vacuity, then ÷ satisfies uniformity.

2. If ÷ satisfies closure, inclusion, vacuity, and recovery, then ÷ satisfies relevance.

Corollary. Let ÷ be an operation on a theory A. If ÷ satisfies the basic Gärdenfors
postulates, then ÷ satisfies success, inclusion, uniformity, and relevance.

Unfortunately, for arbitrary sets a characterization result relating to the supple-
mentary postulates has not been found, though soundness results have and are
reported below. Note that Lemma 2.2.6 is only valid in the case of theories, so
the relevant operations here are the transitively maximizingly relational partial
meet contractions for arbitrary sets.

Theorem 2.2.11 ([13]). If ÷ is a transitively maximizingly relational partial meet
contraction for a set A, then ÷ satisfies conjunctive overlap.

Conjunctive inclusion has only been shown for finite and disjunctively closed
sets. (Disjunctive closure is a weakening of logical closure, requiring a set to
contain disjunctions of each pair of its non-disjunctive elements.)

Theorem 2.2.12 ([16], p. 152). If ÷ is a transitively maximizingly relational partial
meet contraction for a finite and disjunctively closed set A, then ÷ satisfies conjunctive
inclusion.
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2.2.3 Philosophical notes

Before we turn our attention to other contraction types, it is worth remarking on
two problems with the partial meet approach. The first is purely philosophical:
the relations v which generate partial meet contractions are relations on P(A).
A believing agent actually possessing preferences between subsets of his beliefs
is strange even from a normative point of view, let alone a descriptive one.

Secondly, recall that in the definition of a selection function γ for A, we require
that γ(∅) = {A}. This implies that γ is not a selection function for any set
different from A, in particular, by success it will not be a selection function
for A ÷ α for any (non-tautologous) α actually in A. This means that partial
meet contractions cannot be iterated, as the approach gives no guidance on
how to produce a new selection function, presumably one is not given to
the believing agent when he receives a new sentence to contract from, and
after a single contraction the selection function the believing agent possesses
becomes useless. This problem is shared by the entrenchment contractions
discussed next, but the incisions of kernel contractions and the hierarchies of
safe contractions discussed afterwards may be reused.

See [11] for a further discussion.

2.3 Entrenchment contractions

Entrenchment contractions are a radically different method of contraction, in-
troduced in 1988 by Gärdenfors and Makinson [8]. The central idea is to utilize
a preference structure the agent possesses on his beliefs directly, rather than on
subsets thereof as in relational partial meet contractions. These are entrenchment
relations, relations on an agent’s beliefs with an intended reading of “willingness
to give up.”

In all the following, let A be a set, α, β, and γ be sentences, and ≤ be a relation
on A.

transitivity If α ≤ β and β ≤ γ, then α ≤ γ.

dominance If α ` β, then α ≤ β.

conjunctiveness Either α ≤ α ∧ β or β ≤ α ∧ β.

minimality If ⊥ < Cn(A), then α < A if and only if α ≤ β for all β.

maximality If β ≤ α for all β, then ` α.

The meaning of transitivity is obvious, dominance says that entrenchment
follows consequence, conjunctiveness says that a conjunction is as entrenched as
one of its conjuncts, minimality says that every sentence not currently believed
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is minimally entrenched (as long as the beliefs are consistent), and maximality
says that only logical truths are maximally entrenched.

Definition 2.3.1 ([8]). ≤ is an entrenchment relation on A if and only if it satisfies
transitivity, dominance, conjunctiveness, minimality, and maximality.

These are used in a very direct way to produce contractions.

Definition 2.3.2 ([8]). ÷ is the entrenchment contraction on a theory A generated
by an entrenchment ≤ if and only if A ÷ α = {β ∈ A|α < α ∨ β or α ∈ Cn(∅)}.

÷ is an entrenchment contraction on a theory A if and only if there is some
entrenchment ≤ on A such that ÷ is generated by ≤.

The only part of this definition which is not completely straightforward is why
the disjunction α ∨ β is present instead of simply β. In short, this guarantees
that the contraction satisfies recovery. For a discussion, see page 100 of [16]
(where these contractions are called Gärdenfors entrenchment contractions).

With the strong constraints placed on the relations, it is not surprising we get
the following strong characterization result.

Theorem 2.3.3 ([8]). ÷ is an entrenchment contraction on a theory A if and only if ÷
satisfies the basic and the supplementary Gärdenfors postulates.

2.3.1 Basic entrenchments

It is worth noting that Hans Rott developed a weaker theory of entrenchment-
based operations much later, which he calls “basic entrenchment operations”
[21]. This work is done in terms of revision operations directly, without using
the Levi identity and not considering pure contractions, so reporting those
results would require too much background to do here, especially since they
are not used by any current results on safe contractions.

However, it is worth noting that in that paper, Rott has found a class of
entrenchment-based operations equivalent in the case of theories to the ba-
sic Gärdenfors postulates, so study of entrenchment can finally be broken into
two “tiers” as discussed in the section on partial meet contractions. Perhaps
safe contractions can be related to this new class.

2.3.2 Philosophical notes

Entrenchment contractions are at least somewhat more plausible than partial
meet contractions, in that the relations on which they are based are relations
on an agent’s beliefs, and not on subsets thereof. However, there are lots of
restrictions on the behavior of the relation. Of course, all of the restrictions have
a clear logical motivation, but their philosophical motivation and normative
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status is less clear (it is obvious they are not descriptive claims, no believer can
even pretend to obey them all). The hierarchies discussed in the next section
on safe contractions have much weaker constraints.

Also, like selection functions for A being selection functions only for A (and
no other sets) because of the case in their definition for an empty remainder,
entrenchment relations for A are entrenchment relations for A only (and no
other sets) because of minimality. This causes the same difficulties with iterated
belief change that were discussed in Section 2.2.3.

Entrenchment contractions are also the least extensible of the methods dis-
cussed in this thesis. There has been little to no work on definitions of en-
trenchment contractions for arbitrary sets; it is extremely difficult to do so. If
the background set for an entrenchment contraction is small, the restrictions on
the entrenchment relation behave strangely. And, as discussed, only compara-
tively recently was a way to weaken entrenchment contractions to satisfy only
the basic Gärdenfors postulates found.

The chief interest of entrenchment contractions in this thesis is the result of
Hans Rott’s, reported as Theorem 2.4.9 in the next section, that a particular
kind of relation on which a subclass of safe contractions is based can be turned
into an entrenchment relation and vice versa.

2.4 Safe contractions

Safe contractions were introduced in 1985 by Alchourrón and Makinson, mak-
ing them the second-oldest class of contractions in the AGM tradition—yet they
are by far the least understood. The idea is, like in entrenchment contractions,
to use a preference structure on an agent’s beliefs which roughly corresponds
to “willingness to give up,” or “relative safety” of pairs of beliefs. However,
the relations are used in a more complex manner and have much weaker re-
quirements.

Definition 2.4.1 ([4]). A relation ≺ on a set of sentences A which is finitely
acyclic (i.e. there are not α1, . . . , αn ∈ A such that α1 ≺ · · · ≺ αn ≺ α1 for any
finite n) is called a hierarchy on A.

Finite acyclicity is the only requirement placed on the relations, and it is ex-
tremely weak. Note transitivity is consistent with finite acyclicity but not
required by it. α ≺ β should be read as “α is less safe than β,” i.e. the agent is
more willing to give up α than β.

Definition 2.4.2 ([4]). The set A/α of elements of A safe with respect to α (modulo
a hierarchy on A called≺) is the set of all elements of A which are not≺-minimal
in any inclusion-minimal subset B of A such that α ∈ Cn(B).
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The safe elements of A with respect to α are all elements of A which cannot be
“blamed” for α; either they do not contribute to the implication of α at all or,
when they do, there is always another element contributing to the implication
of α which the agent disprefers. So, when contracting from α, one need not
remove any of the safe elements.

This usage of the hierarchy≺ explains the requirement of acylicity; because of it,
at least one element in each inclusion-minimal subset above will be ≺-minimal,
and therefore fail to be safe. Moreover, we only need finite acyclicity because
these inclusion-minimal subsets will always be finite by compactness of the
consequence operation. This will suffice to allow us to define a contraction.

Definition 2.4.3 ([4]). ÷ is the safe contraction on A generated by the hierarchy ≺ if
and only if for all α, A ÷ α = A ∩ Cn(A/α).

÷ is a safe contraction on A if and only if there is some hierarchy ≺ on A such
that ÷ is generated by ≺.

Safe contractions are intuitive in this way. When contracting from α, we simply
keep all the safe elements of A with respect by α, and anything they imply.
Alchourrón and Makinson found immediately that safe contractions on theories
satisfied the basic postulates.

Theorem 2.4.4 ([4]). If ÷ is a safe contraction for a theory A, ÷ satisfies the basic
Gärdenfors postulates.

2.4.1 Regularity and virtual connectivity

Like transitively relational partial meet contractions, additional structure must
be specified for safe contractions to satisfy the supplementary postulates. This
comes in placing restrictions on the generating hierarchy. Two related proper-
ties are given below.

continuing-up If α ≺ β and β ` γ, then α ≺ γ.

continuing-down If α ` β and β ≺ γ, then α ≺ γ.

Both continuing-down and continuing-up say that the hierarchy coheres with
consequence in natural but distinct ways. It turns out that these are all that is
needed to achieve conjunctive overlap.

Definition 2.4.5. If ÷ is a safe contraction for A generated by a hierarchy which
satisfies a property, we also say the safe contraction has that property. For
example, if ÷ is generated by a continuing-up hierarchy, ÷ is a continuing-up
safe contraction.

Theorem 2.4.6 ([4]). If ÷ is a continuing-up or continuing-down safe contraction for
a theory A, then ÷ satisfies conjunctive overlap.
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See Section 3.5 for my own results on safe contractions and conjunctive overlap
more generally.

Conjunctive inclusion, the other supplementary postulate, is a little trickier. To
achieve it, we need virtual connectivity, a strong postulate that says the agent
has as many preferences as possible. (Full connectivity, having every unordered
pair of beliefs in a preference relationship, is too strong, as it implies reflexivity,
which violates finite acyclicity and is thus inconsistent with being a hierarchy.)

virtual connectivity If α ≺ β then either α ≺ γ or γ ≺ β.

regularity Both continuing-up and continuing-down are satisfied.

The continuing-up and continuing-down distinction collapses in the presence
of virtual connectivity and closure.

Lemma 2.4.7 ([4]). If ≺ is a virtually connected hierarchy over a theory A, ≺ satisfies
continuing-up if and only if it satisfies continuing-down.

Alchourrón and Makinson were able to produce the following satisfaction
result.

Theorem 2.4.8 ([4]). If ÷ is a regular and virtually-connected safe contraction for a
theory A, then ÷ satisfies the basic and the supplementary Gärdenfors postulates.

In a paper the following year [5], Alchourrón and Makinson got part of the
characterization result (for the case of a finite language), but the full theorem
was only given by Hans Rott later in 1992.

Theorem 2.4.9 ([20]). ÷ is a regular and virtually connected safe contraction for a
theory A if and only if it satisfies the basic and the supplementary Gärdenfors postulates.

The technique Rott used was to demonstrate a conversion technique between
regular and virtually connected hierarchies on theories and the entrenchments
discussed in the last section. Continuing-up and -down and virtual connectivity
can be exploited to achieve transitivity, dominance, conjunctiveness, minimal-
ity, and maximality.

This is an ingenious technique, but unfortunately it has proven to be inexten-
sible. Without those strong properties, there is no easy connection between
hierarchies and entrenchments; perhaps some work could be done linking hi-
erarchies to the weaker basic entrenchments discussed in Section 2.3.1.

As of 2009, this result is still the most advanced technical result and the only
characterization result related to safe contractions in existence.
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2.4.2 Revision equivalence

There is a concept called revision equivalence which is of interest to philosophers
and logicians working with contractions, and it is worth noting how it relates to
safe contractions in particular. In Section 2.1.1 we discussed the three types of
belief change, and mentioned that assuming the (philosophically controversial)
Levi identity (Definition 2.1.6), we could focus on contractions exclusively
as the arbitrary belief changes of revisions could be modelled in a two-step
procedure. However, the revisions obtained by the use of the Levi identity
are still of great importance, since examples of pure contractions where no
beliefs are added are somewhat difficult to produce, and their existence is also
considered philosophically debatable.

The Levi identity is a conversion procedure transforming contraction operators
into revision operators. It turns out to be non-injective; that is, some contraction
operators are identified after passing through the Levi identity. These are called
revision-equivalent.

Definition 2.4.10 ([19]). Two contraction operators ÷ and ÷′ for a theory A
are revision-equivalent if and only if for all α we have that (A ÷ ¬α) + α =
(A ÷′ ¬α) + α, i.e., if using the Levi identity to transform them into revision
operators transforms them into the same revision operator.

In the paper where he introduced revision equivalence, Makinson defined the
following very general class of operations.

Definition 2.4.11 ([19]). An operator ÷ on a theory A is a withdrawal if and only
if it satisfies success, inclusion, closure, extensionality, and vacuity.

In Section 2.1.2, a completely implausible contraction operator was given which
satisfied success, inclusion, closure, and extensionality, but which failed to
satisfy vacuity. Satisfying vacuity as well is not much more difficult: define ÷
a withdrawal on a theory A such that if α < A then A÷ α = A, and if α ∈ A then
A÷α = Cn(∅) ([16], p. 73). That is, remove all non-tautological beliefs any time
you must remove any belief. This shows just how permissive the withdrawal
concept is (and thus how much some postulate like recovery is needed).

Withdrawals are disconcerting because of the following result.

Theorem 2.4.12 ([19]). Let A be a theory and ÷ be a withdrawal for A. Then there is
a partial meet contraction ÷′ for A which is revision-equivalent to ÷.

Corollary. Let A be a theory and÷ a contraction for A that satisfies the basic Gärdenfors
postulates except recovery. Then there is a contraction ÷′ for A that satisfies the basic
Gärdenfors postulates including recovery and is the same as ÷ from the standpoint of
revisions.

This result, on first reading, seems to say that much of the technical differences
we have discussed are irrelevant from the standpoint of revisions. However, it
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only says that the classes of withdrawals over theories and partial meet contrac-
tions over theories are revision-equivalent; for restricted subclasses of partial
meet contractions this result may not apply. As safe contractions over theories
do form a subclass of partial meet contractions over theories, a further result
showing the applicability or lack of applicability of the revision-equivalence
worry is needed.

2.4.3 Philosophical notes

Safe contractions are much simpler than the other types of contraction discussed
in the AGM tradition. Hierarchies are relations on beliefs which do not require
an agent to adhere to nearly any coherence requirements. The motivation and
definition of “safe elements” is intuitive and reasonable. They are not without
philosophical problems (for example, when taken over theories they still satisfy
recovery), but any they do have are shared by all other approaches to belief
revision discussed in this thesis. (There are more modern approaches, such as
“mild” and “Levi-” contractions, which do not fit so neatly into this picture.)

Also, note that safe contractions are easily iterable, as a relation can be a hi-
erarchy for many sets. Thus, an agent can contract and contract again. Un-
fortunately, using the same hierarchy all the time means that an agent’s future
beliefs are determined by his current belief state, which is not ideal. How-
ever, for non-philosophical applications of belief revision techniques, such as
database updating in computer science, this may not be a problem. In any case,
safe contractions are better off than most. In the next section we will see that
(with the falsification of relevance) safe contractions over arbitrary sets are also
immune to still other philosophical issues.

2.5 Kernel contractions

Kernel contractions were introduced by Hansson in 1994 in [14], though some
ideas go back to [6]. He intended them to be a non-relational superclass of
the safe contractions introduced in the previous section; to stand in the same
relationship to safe contractions as partial meet contractions stand with regard
to relational partial meet contractions in standard AGM theory.

During the presentation of partial meet contractions, we reflected on the fol-
lowing fact: the central idea of the partial meet contraction is the remainder set,
the set containing all inclusion-maximal subsets which fail to imply a sentence.
Informally, these are all the “ways” we could fail to imply something. From the
remainder set we choose the result of the contraction. But we also mentioned
the dual idea, focusing on all the “ways” something is implied.

Definition 2.5.1 ([14]). Let A be a set and α a sentence. The kernel set (or
entailment set) of A with α, written A y α, is the set of all inclusion-minimal
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subsets of A entailing α. Its elements are the α-kernels of A.

The set of all kernel sets of A will be written KerSets(A), and the set of all kernels
of A (for all α!) will be written Kers(A). (Notice KerSets(A) ⊆ P(P(A)), just as
RemSets(A) ⊆ P(P(A)). Notice also Kers(A) ⊆ P(A).)

The second component of partial meet contractions is the selection function
which chooses which elements of the remainder set to use. The counterpart in
the kernel contraction framework is the incision function, which chooses which
elements of the kernels in the kernel set to stop using.

Definition 2.5.2 ([14]). An incision function σ for a set A is a function σ :
KerSets(A)→ P(A) such that for all α

1. σ(A y α) ⊆
⋃

(A y α),

2. for all X ∈ A y α, if X , ∅, then X ∩ σ(A y α) , ∅.

Notice that there is no clause in the definition of an incision function which
explicitly mentions the background set, and thus an incision can be reused
like a hierarchy can. This is in direct contrast to entrenchment relations and
selection functions, which mention the background explicitly, but agrees with
hierarchies, as expected. (For more information, see [16] section 2.11.)

An incision function “cuts into” each kernel, selecting at least one sentence for
removal. We use this idea to define the notion of a kernel contraction.

Definition 2.5.3 ([14]). Let A be a set and σ an incision function for A. The
kernel contraction ≈σ for A generated by σ is as follows

A ≈σ α = A \ σ(A y α)

An operation ÷ is a kernel contraction for A just in case there is some incision
function σ for A such that ÷ is the kernel contraction for A generated by σ.

Notice immediately that a kernel contraction is associated with exactly one
incision function, and vice versa. Thus, when studying kernel contractions, we
can restrict our attention to incision functions (in much the same way that when
studying partial meet contractions we may restrict our attention to selection
functions).

In [14], Hansson found a characterization result for the class of kernel contrac-
tions over arbitrary sets. It turns out we need an even weaker postulate than
relevance for the result. This postulate is core retainment.

core retainment If β ∈ A and β < A ÷ α then there is B ⊆ A such that α < Cn(B)
and α ∈ Cn(B + β).
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Theorem 2.5.4 ([14]). ÷ is a kernel contraction for a set A if and only if ÷ satisfies
success, inclusion, uniformity, and core retainment.

As mentioned, core retainment is a weakening of relevance, so we have the
following result as well.

Lemma 2.5.5 ([16]). If ÷ is an operation on A which satisfies relevance, ÷ satisfies
core retainment.

Corollary. If ÷ is a partial meet contraction on A, ÷ is a kernel contraction on A.

Kernel contractions in general do not satisfy closure, even over theories. The
portion of Lemma 2.2.9 relating to closure does not apply here because relevance
may not be satisfied. We will need an additional constraint on incision functions
to guarantee closure, which is the subject of Section 2.5.1.

2.5.1 Smoothness and closure

The problem is that we may remove sentences without removing other sen-
tences which entail them. We obtained closure “for free” in the partial meet
framework, because inclusion-maximal subsets of closed sets will clearly be
closed, and the intersection of several closed sets is itself closed. Here, we must
introduce the smoothness condition:

Definition 2.5.6 ([14]). Let σ be an incision function for a set A. σ is smooth if
and only if for all α and β and B ⊆ A that if β ∈ Cn(B) and β ∈ σ(A y α) then
B ∪ σ(A y α) , ∅.

÷ is a smooth kernel contraction if and only if it is generated by a smooth incision
function.

This is enough to give us another new postulate which Hansson defined in [14],
a version of closure which is meaningful for arbitrary sets.

relative closure A ∩ Cn(A ÷ α) ⊆ A ÷ α.

The following characterization result tells us that relative closure is exactly
what the restriction to smooth incisions has obtained.

Theorem 2.5.7 ([14]). ÷ is a smooth kernel contraction for a set A if and only if ÷
satisfies success, inclusion, uniformity, core retainment, and relative closure.

Moreover, this class is still a superclass of partial meet contractions, even for
arbitrary sets.

Lemma 2.5.8 ([16]). If÷ is an operation on A which satisfies relevance, then÷ satisfies
relative closure.
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Corollary. If÷ is a partial meet contraction on A, then÷ is a smooth kernel contraction
on A.

Proof. We start with success, inclusion, uniformity, and relevance. We must
obtain core retainment and relative closure. By Lemma 2.5.5, relevance gives
us core retainment. By the above lemma, we have relative closure. �

Over arbitrary sets, the converse claim fails. (Hansson gives an example on p.
91 of [16].) However, in the case of theories, the converse claim holds. To see
why, here is a lemma.

Lemma 2.5.9 ([16]). Let ÷ be an operation on an arbitrary set A.

1. If ÷ satisfies inclusion and relative closure, ÷ satisfies closure.

2. If ÷ satisfies inclusion and core retainment, ÷ satisfies vacuity.

3. If A is a theory and ÷ satisfies core retainment, ÷ satisfies recovery.

Corollary. If ÷ is a smooth kernel contraction on A, ÷ satisfies the basic Gärdenfors
postulates except recovery. If in addition A is a theory, ÷ satisfies recovery and is a
partial meet contraction.

Proof. We start with success, inclusion, uniformity, core retainment, and rel-
ative closure. We need to obtain closure, extensionality and vacuity. By the
above lemma, we have closure from relative closure and inclusion, and we
have vacuity from inclusion and core retainment. By Lemma 2.2.10, we have
extensionality from uniformity.

If A is a theory, by the above we also have recovery from core retainment and
therefore ÷ is a partial meet contraction. �

The above and the previously reported Lemma 2.5.8 that all partial meet con-
tractions are smooth kernel contractions yield the characterization and identi-
fication result.

Theorem 2.5.10 ([14]). ÷ is a smooth kernel contraction for a theory A if and only if
÷ satisfies the basic Gärdenfors postulates.

2.5.2 Saturation and smoothness

We can achieve closure (and thus the basic postulates) in the kernel contraction
framework in another way. Smoothness is a constraint on the incisions which
generate a kernel contraction, which restricts them to the “correct” class to
obtain relative closure. We may also modify a kernel contraction directly via a
process Hansson called saturation.
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Definition 2.5.11 ([14]). Let ≈σ be a kernel contraction for A. The saturation of
≈σ, written ≈̂σ, is defined in the following way. For all α

A≈̂σα = A ∩ Cn(A ≈σ α)

÷ is a saturated kernel contraction for A if and only if it is the saturation of some
kernel contraction for A.

Saturating a contraction satisfies relative closure in the most obvious way—we
simply place all the entailed sentences in it directly. These two approaches
happily coincide.

Theorem 2.5.12 ([14]). ÷ is a smooth kernel contraction for a set A if and only if it is
a saturated kernel contraction for A.

Corollary. ÷ is a saturated kernel contraction for a set A if and only if it satisfies
success, inclusion, uniformity, core retainment, and relative closure. ÷ is a saturated
kernel contraction for a theory A if and only if it satisfies the basic Gärdenfors postulates.

2.5.3 Kernel selections and cumulativity

Notice that we do not require that incision functions treat “similar” entailment
sets in “similar” ways, which seems like a reasonable idea. For example, if p
and q are independent sentences in A, {p, p → q} is an element of A y (p ∧ q)
and also of A y (p ↔ q), but the definition of an incision function (Definition
2.5.2) does not require that σ(A y (p↔ q)) have any relationship whatsoever to
σ(A y (p ∧ q)).

This prompts the following idea, mentioned briefly in [14] but developed more
in Hansson’s book [16].

Definition 2.5.13 ([14]). s is a kernel selection function (or ksf ) for a set A if and
only if it is a function s : Kers(A)→ P(A) such that for allα and for all X ∈ A y α,

1. s(X) ⊆ X,

2. if X , ∅, then s(X) , ∅.

The most important thing to notice immediately about kernel selection func-
tions is that they are defined simultaneously over all elements of all kernel sets.
So if a subset X of A is both an α-kernel and a β-kernel for α , β, X must be
treated the same way regardless of whether α or β is being contracted.

We may define an incision function in terms of a ksf in the following way:

Definition 2.5.14 ([16]). Let s be a ksf for a set A. Then an incision function σ is
the cumulation of s if and only if for all α

σ(A y α) =
⋃
{s(X)|X ∈ A y α}
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An incision function σ is cumulative if and only if there is some ksf such that σ is
the cumulation of that ksf. An operation ≈σ is a cumulative kernel contraction
if and only if it is generated by a cumulative incision function σ.

In this way, we have defined a new class of contractions—the cumulative kernel
contractions. Being able to do this is why it is useful to talk about Kers(A)
instead of just KerSets(A). We could also have defined a Rems(A), the set of all
remainders of A, regardless of whether they’re α- or β-remainders, but because
of how remainder sets are used to define partial meet contractions, talking
about Rems(A) would have been pointless, and we can restrict our attention to
RemSets(A). This is because a selection function selects several remainders to
use at once, but does not “look inside” the remainders at their elements. By
contrast, an incision “looks inside” each kernel of the kernel set it is defined on.

Hansson notes in Section 2.9 of [16] that there are non-cumulative kernel con-
tractions, but his example uses a background set which fails to be closed. I
will further investigate the connections between cumulativity and other classes
of contractions in Sections 3.3 and 3.4, and extend this example to the case of
theories.

2.5.4 Safe kernel contractions

Now we are finally at a point where we can define safe contractions in Hansson’s
more general kernel contraction framework. This idea was clearly present in
[14], but was not mentioned as more than an aside. A comprehensive treatment
had to wait until [16].

Safe contractions are essentially relational restrictions of cumulative kernel
contractions, so we make the following definition.

Definition 2.5.15 ([16]). A ksf s for a set A is based on a relation ≺ on A if and
only if for all X, s selects the ≺-minimal elements of X. That is, for all α, for all
X ∈ A y α, β ∈ s(X) if and only if β ∈ X and there is no δ ∈ X such that δ ∈ β.

A ksf is relational if and only if it is based on some relation.

Notice that if a relation generates a ksf, it generates a unique ksf. (See my own
results in Section 3.4 for when exactly a relation generates a ksf.) Moreover, a
hierarchy always suffices to generate a ksf:

Theorem 2.5.16 ([16]). Let ≺ be a hierarchy on a set A. Then there is a ksf s for A
based on ≺. This is the ksf generated by ≺.

This is because, as remarked in the section on Alchourrón and Makinson’s safe
contractions, at least one element will be≺-minimal in every inclusion-minimal
subset. In the new ksf terminology, s(X) , ∅ for any X , ∅ by finite acyclicity
of ≺ and the fact that each kernel X will be finite since Cn is assumed to be
compact.
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A safe kernel contraction, then, is a cumulative kernel contraction based on a
hierarchy which is then saturated.

Definition 2.5.17 ([16]). Let ≺ be a hierarchy on a set A. Let s be the ksf
generated by ≺, and let σ be the cumulation of s. Then ≈̂σ, the saturation of the
kernel contraction generated by σ, is the safe contraction based on ≺.

An operator ÷ is a safe kernel contraction for a set A if and only if there is some
hierarchy ≺ on A such that ÷ is the safe kernel contraction based on ≺.

This definition clearly shares the same motivation as the definition of Al-
chourrón and Makinson discussed in Section 2.4, but no proof that these def-
initions were the same appears in the literature. In fact, in the only existing
presentation of safe kernel contractions, which is in Section 2.9 of Hansson’s
textbook [16], there is a further restriction on hierarchies not present in the orig-
inal defining paper [4], even though Hansson cites that paper in the definition.
These issues are the focus of Section 3.1 of the next chapter.

2.5.5 Revision equivalence

Revision equivalence is not an especially pressing matter for kernel contrac-
tions, but precisely why that is so should be noted. Of course, kernel con-
tractions exhibit significantly more interesting and varied behavior than partial
meet contractions, and so it would be more obnoxious to have that behavior col-
lapse under the Levi identity, but this behavior occurs only when they are taken
over arbitrary sets. In that case, the class of all kernel contractions, of smooth
kernel contractions, and of partial meet contractions forms a strict descending
chain of subsets, as we will see in the next chapter.

However, Makinson’s revision equivalence results of [19] only apply to the case
of theories. The class of kernel contractions over theories is largely unstudied
because the postulate of closure may fail, which actually means it is a larger class
than even the class of withdrawals, and thus the revision equivalence worry
does not apply. Moreover, the distinction between partial meet and smooth
kernel contractions collapses, so the worry there is exactly the same as it is for
partial meet.

Cumulative kernel contractions over theories form neither a subclass nor a
superclass of partial meet contractions over theories, as we shall see in Sections
3.4 and 3.3. It is unclear how they relate to withdrawals, and thus how revision
equivalence relates to them. More research is needed in this area.

2.5.6 Philosophical notes

Kernel contractions are somewhat less intuitive than safe contractions are,
which is unsurprising since they are so much more general. Much as it is a little



26 CHAPTER 2. BACKGROUND

strange for a believer to possess a selection function (regardless of whether or
not it is relational), it is a little strange for a believer to possess an incision, much
less a smooth one. The extra worry about smoothness is alleviated somewhat
by the fact that it can be dispensed with via saturation. In contrast to other areas
of the AGM tradition, both the normative status and the descriptive status of
kernel contractions are relatively open, since they restrict a believer’s behavior
only very slightly.

As for iterability, kernel contractions share the advantage of safe contractions
in that incision functions do not make explicit mention of the background set
on which they are defined, and thus may be reused exactly as hierarchies may.
They likewise share the drawback that future changes are determined by that
incision and that it is not and cannot be modified, and that the history of how
an agent arrives at a belief state is not taken into account when constructing a
new belief state for him.

Now that all the definitions needed have been introduced and the current state
of the art has been presented, let us turn to new results.



Chapter 3

Results

3.1 Safe kernel contractions and safe contractions

As is obvious from the presentation in the last section, Hansson’s kernel con-
tractions are supposed to be nonrelational generalizations of safe contractions.
It is worth showing, though, that he achieved this goal, and the kernel-based
version of safe contraction is the same as the original. No such result appears
in the literature, so I derived the below.

Theorem 3.1.1. Let ≺ be a hierarchy on a set A. Then the safe kernel contraction and
the safe contraction generated by ≺ are identical.

Proof. Let≺ be a hierarchy on A. ≺ generates a ksf s which generates an incision
σ which generates a safe kernel contraction, call it ÷H (for Hansson). ≺ also
generates a safe contraction, call it ÷AM (for Alchourrón and Makinson). To
show ÷H and ÷AM are the same, it is enough to show A ÷H α = A ÷AM α for all
α. Let α be given. A ÷AM α = A ∩ Cn(A/α) and A ÷H α = A ∩ Cn(A ≈σ α). It is
enough to show A ≈σ α = A/α.

A ≈σ α = A \ σ(A y α), and moreover by the cumulation in the generation of
the safe kernel contraction A ≈σ α = A \

⋃
{s(X)|X ∈ A y α}. An element β is a

member of A \
⋃
{s(X)|X ∈ A y α} when β ∈ A and β < s(X) for any X ∈ A y α.

But recall by the generation of the ksf s in the safe kernel contraction that
β < s(X) means β is not ≺-minimal in X. Further, recall that X ∈ A y α means
X is a subset of A minimal under inclusion which proves α. So β ∈ A ≈σ α
exactly when β ∈ A and β is not ≺-minimal in any subset of A minimal under
inclusion which proves α. This is exactly the definition of β being safe in A with
respect to α, so β ∈ A/α exactly when β ∈ A ≈σ α. Thus, A/α = A ≈σ α and
A ÷AM α = A ÷H α. �

27
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Corollary. The classes of safe contractions and safe kernel contractions are the same.
Moreover, any subclass of safe contractions formed by restricting the behavior of the
hierarchies is identical to any subclass of safe kernel contractions formed by the same
restriction, and vice versa.

This result, although extremely straightforward once presented, really ought
to appear in the literature. It justifies the initial project of this thesis to study
safe contractions via kernel contractions, and means Hansson has succeeded in
extending safe contractions to a non-relational concept, since the class of safe
contractions is obviously a subclass of saturated kernel contractions, and thus
of kernel contractions.

As can be seen in the proof above, the safe elements of A with respect to α
in Alchourrón and Makinson’s terminology are exactly the value on α of the
contraction ≈σ which is saturated to become the safe contraction on A. This
motivates introducing a definition for this kind of contraction.

Definition 3.1.2. ≈σ is the presafe contraction for a set A generated by a hierarchy
≺ for A if and only if σ is the cumulation of the ksf s generated by ≺.

÷ is a presafe contraction for A if and only if there is a hierarchy ≺ for A such
that ÷ is the presafe contraction for A generated by ≺.

The class of presafe contractions is clearly a subclass of the cumulative kernel
contractions, but its precise properties will be explored in the remainder of this
thesis.

What makes the above Theorem 3.1.1 less trivial is, if not an error, at least a
significant oversight. Hansson remarks already in [14] that one can define safe
contractions in the kernel contraction framework, as reported in this thesis and
verified above. In the literature, though, this definition is not ever done until
Hansson’s textbook [16], and there is a difference between the presentation
given there and the presentation reported here. On page 94 of [16], Hansson
defines a hierarchy, citing Alchourrón and Makinson’s [4] as we have. However,
he also requires a hierarchy to satisfy the following condition.

intersubstitutivity If α↔ α′, β↔ β′ ∈ Cn(∅), then α ≺ β if and only if α′ ≺ β′.

The definition of a hierarchy requiring intersubstitutivity is presented as a
citation of the definition in [4] even though it differs from that presented there
and reported here, and the condition of intersubstitutivity does not appear
elsewhere in the literature (e.g. [5] and [20] also only require finite acyclicity,
as I do in this thesis).

Clearly the classes of all plain (merely finitely acyclic) hierarchies and all inter-
substitutive hierarchies are not equal, and it is not obvious that this difference
should collapse when the hierarchies are used to generate safe contractions.
The strongest result I have been able to obtain is the following.
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Lemma 3.1.3. Let ≺ be a hierarchy on A. Then there is an intersubstitutive hierarchy
≺
′ such that if ÷ is the safe contraction generated by ≺ and ÷′ that generated by ≺′, we

have A ÷′ α ⊆ A ÷ α for all α.

Proof. Let ≺ be a hierarchy on A and ÷ be the safe contraction generated by
≺. We will define an associated intersubstitutive hierarchy on A by removing
problematic relationships from ≺. Define ≺′ such that α ≺′ β if and only if α ≺ β
and for all α′, β′ ∈ A such that α↔ α′, β↔ β′ ∈ Cn(∅) it is the case that α′ ≺ β′.
Clearly ≺′ is an intersubstitutive hierarchy.

Let a sentence α be given. Let β ∈ A/′α, the set of elements of A safe with
respect to αmodulo ≺′. Therefore, in any inclusion-minimal subset B of A such
that α ∈ Cn(B), if β ∈ B then there is γ ∈ B such that γ ≺′ β. Notice every ≺′

relationship between members of A is a ≺ relationship, by definition. So in any
such B, if β ∈ B then there is γ ∈ B such that γ ≺ β, and thus β ∈ A/α, the set
of elements of A safe with respect to α modulo ≺. A/′α ⊆ A/α and therefore
A ÷′ α ⊆ A ÷ α, by monotonicity of Cn and intersection. �

Two aspects of this lemma and proof should be noticed. Firstly, a lemma of this
character showing A ÷′ α = A ÷ α for all α is exactly what is needed to show
that the intersubstitutivity condition is simply a mistake in citation and not a
mistake in mathematics. It is not obvious how any other technique could be
used to show the classes of intersubstitutive safe contractions and plain safe
contractions are equal.

Secondly, the technique in the first part of the proof is the only way one can
hope to construct an intersubstitutive hierarchy from a plain hierarchy for this
purpose. It is clear the construction of the intersubstitutive hierarchy must
start with the plain hierarchy and that hierarchy can be modified in only two
ways: relationships can be added to force intersubstitutivity (α ≺′ β if and only
if α′ ≺ β′ for any equivalent α′ and β′), or relationships can be removed to force
intersubstitutivity as above (α ≺′ β if and only if α′ ≺ β′ for all equivalent α′ and
β′). But the first approach cannot work because, using it, one may in general
introduce cycles, violating the definition of a hierarchy. Thus, we are left with
the second approach, as used in the above proof.

So it is clear an extension of the above argument that shows A ÷ α ⊆ A ÷′ α is
needed, but this is not so easy. The direction above is easy to show because
in defining the new hierarchy we remove relationships. This introduces more
minimal elements, which means more things could be removed. However
the direction to be shown requires us to show that everything which could be
removed is added back via the saturation construction. It is difficult to see how
this could be the case, but I have not been able to produce a counterexample.
The saturation step requires one to work with β ∈ Cn(A/α) instead of simply
β ∈ A/α, and this is much more difficult.

Another reason for doubt is that intersubstitutivity is not implied by acyclicity
at the level of ksfs.
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Lemma 3.1.4. There is a ksf on a theory such that any relation on which that ksf is
based is not an intersubstitutive hierarchy.

Proof. We will construct the ksf. Let p, q be independent beliefs and A =
Cn({p, q}). {p, q} and {p ∧ p, q} are both elements of A y (p ∧ q). Define s such
that s({p, q}) = {p} but s({p ∧ p, q}) = {q}). This is clearly permitted by Definition
2.5.13. Let ≺ be a relation such that s is based on ≺. Clearly p ≺ q and q ≺ p ∧ p.
Then, either p ∧ p ≺ q or not p ∧ p ≺ q. In the first case, ≺ is not acyclic, in the
second case, ≺ is not intersubstitutive as obviously p ↔ (p ∧ p) ∈ Cn(∅). Thus,
in either case, ≺ is not a intersubstitutive hierarchy. �

This is an open question which should be resolved. My intuition is that a
counterexample will be found, perhaps only for sets which fail to be logically
closed. The class of intersubstitutive safe contractions, should it fail to be equal
to the class of all safe contractions, is also an interesting class of contractions
worthy of study.

3.2 Safe contractions on arbitrary sets

The fact that that safe contractions can be defined in the kernel contraction
framework gives us reason to study their action on arbitrary sets which may
fail to be theories. As reported in Section 2.4, Alchourrón and Makinson only
studied safe contractions over theories, but the kernel contraction framework
allows us to expand our inquiries. (Of course, the structure of the proof in the
previous section shows that one could have studied the original safe contrac-
tions over non-closed sets just as well.)

Over theories, Theorem 2.4.4 shows us that safe contractions are all partial meet
contractions. Over arbitrary sets, their definition implies that safe contractions
are all smooth kernel contractions (because they are saturated kernel contrac-
tions and by Theorem 2.5.12), and Lemma 2.5.8 shows us that all partial meet
contractions are also smooth kernel contractions.

It is natural to ask, then, whether safe contractions over arbitrary sets are also
partial meet contractions. By Theorem 2.2.8, this is the case if and only if
they satisfy success, inclusion, relevance, and uniformity. By definition and
Theorem 2.5.10, safe contractions satisfy success, inclusion, core retainment,
relative closure, and uniformity. Therefore, the question is simple.

Remark 3.2.1. Safe contractions over arbitrary sets form a subclass of partial
meet contractions over arbitrary sets if and only if they satisfy relevance.

Lemmas 2.5.5 and 2.5.8 show that relevance implies core retainment and relative
closure, but in the general case the converse is not true (not every saturated
kernel contraction is a partial meet contraction, as seen on p. 91 of [16]). The
only difference between a safe contraction and a saturated kernel contraction
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is the hierarchy on which the safe contraction is based, and it is difficult to
see how the hierarchy could help with the crucial step that changes a proof of
satisfaction of core retainment to a proof of satisfaction of relevance. Recall the
definitions of the two properties:

core retainment If β ∈ A and β < A ÷ α, then there is A′ such that A′ ⊆ A and
that α < Cn(A′) but α ∈ Cn(A′ ∪ {β}).

relevance If β ∈ A and β < A ÷ α, then there is A′ such that A ÷ α ⊆ A′ ⊆ A and
that α < Cn(A′) but α ∈ Cn(A′ ∪ {β}).

Both core retainment and relevance require that for any element β of a set A
which fails to be in A÷α, there be a subset A′ of A which fails to imply α alone,
but for which A′ ∪ {β} implies α. In the case of safe contractions, like kernel
contractions in general, β failing to be in A ÷ α means that it was a member of
some subset B of A such that B implies α but B \ {β} does not. Using B \ {β} for
A′ is a straightforward way to satisfy core retainment.

However, relevance places the additional requirement that the subset A′ in
question is a superset of A ÷ α, which B \ {β} may not be. Further, the obvious
idea of using (A ÷ α) ∪ (B \ {β}) to get around this problem fails. Although
this A′ will certainly satisfy that A′ ∪ {β} implies α, it cannot be shown that it
does not imply α before β is added. This is why smooth kernel contractions are
characterized only by core retainment and not relevance.

It turns out that the generation by a hierarchy does not sufficiently restrict the
behavior of the contraction to satisfy relevance. The main idea of the follow-
ing counterexample was supplied by Horacio Arló-Costa in correspondence; I
further simplified it.

Theorem 3.2.2. There is a safe contraction which fails to satisfy relevance.

Proof. Take A = {p, p→ q, q, q→ r}. Define a hierarchy on A such that the only
relationship is q→ r ≺ q. Let ÷ be the safe contraction on A generated by ≺.

First, notice A y r = {{p, p → q, q → r}, {q, q → r}}. All elements of the first
r-kernel are ≺-minimal, q is the only element of the second r-kernel which fails
to be ≺-minimal, and all elements of A appear in some r-kernel, so A/r = {q}.
Therefore, A ÷ r = A ∩ Cn({q}) = {p→ q, q}.

Notice then that p ∈ A but p < A ÷ r. So relevance requires that there be an
A′ with A ÷ r ⊆ A′ ⊆ A such that r < Cn(A′) but r ∈ Cn(A′ ∪ {p}). There
are four A′ which satisfy the subset requirements, and all fail the consequence
requirements:

r < Cn({p→ q, q} ∪ {p})
r < Cn({p, p→ q, q} ∪ {p})
r ∈ Cn({p→ q, q, q→ r})
r ∈ Cn({p, p→ q, q, q→ r})
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Therefore, there is no possible A′ and relevance is falsified. (To see why core
retainment is still satisfied in this case, notice that {p → q, q → r} ⊆ A is such
that r < Cn({p → q, q → r}) but r ∈ Cn({p → q, q → r} ∪ {p}). It is just that
A ÷ r * {p→ q, q→ r}.) �

Corollary. Not all safe contractions are partial meet contractions.

This confirms that the already difficult behavior of safe contractions on theories
is even more complex on arbitrary sets; in the case of theories, safe contractions
form a subclass of the partial meet contractions (moreover, we shall see that this
relationship is strict in the next section), but in the general case neither forms a
subclass of the other.

3.3 Cumulative kernel contractions and saturation

The result presented in Section 3.1 that safe contractions can be studied as
a subclass of saturated kernel contractions is quite useful. With it, we have
several other kinds of contractions which are related to safe contractions, and
we can explore their properties.

The first area I investigated is the relationship between saturated kernel con-
tractions and cumulative kernel contractions. Hansson notes in Section 2.9 of
[16] that not all kernel contractions are cumulative, but his example is stated
for a set that is not closed, and makes no reference to saturation or smoothness.

The counterexample is as follows. Let A = {p, p → q, q → p} for logically
independent p and q. Then A y q = {{p, p → q}} and A y (p ↔ q) = {{p, p →
q}, {p→ q, q→ p}}. Define σ an incision for A such that σ(A y q) = {p→ q} and
σ(A y (p ↔ q)) = {p, q → p}. But if σ cumulated any ksf s, then s({p, p → q}) =
{p → q} and therefore p → q ∈ σ(A y (p ↔ q)) which contradicts the definition
of σ. So σ does not cumulate any ksf ([16], p. 93).

I extended this counterexample, adding saturation and basing it on a theory in
the below result.

Theorem 3.3.1. There is a saturated kernel contraction ÷ for a theory A which is not
a cumulative kernel contraction.

Proof. We will exhibit such a kernel contraction. Let p and q be logically inde-
pendent beliefs, and suppose A = Cn({p, q}).

Notice that every {α, β} such that α is equivalent to p and β is equivalent to p→ q
is in A y q, and any such β must be in some element of some entailment set of
that form. So, define σ such that for any sentence β such that β ↔ (p → q) ∈
Cn(∅), β ∈ σ(A y q). Now notice that for any X ∈ A y (p↔ q), if β ∈ X such that
β ↔ (p → q) ∈ Cn(∅), then X = {β, δ} for some δ such that either δ ↔ p ∈ Cn(∅)
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or δ↔ (q→ p) ∈ Cn(∅). Therefore, we may define σ such that for every such β,
β < σ(A y (p↔ q)).

We may further require that σ be smooth, since for any subset B ⊆ A comprised
of sentences equivalent to p → q, that subset entails nothing except other
sentences equivalent to p→ q, so smoothness is vacuously satisfied by σ acting
on those elements, and we may assume it is satisfied by σ’s action on all other
elements without contradicting our definition above.

But this σ is not cumulative. Assume for contradiction that s is a ksf such
that σ cumulates s. Then since every β equivalent to p → q is in σ(A y q), for
every {α, β} such that α is equivalent to p, s({α, β}) = {β} by the definition of a
ksf. But {α, β} ∈ A y (p ↔ q), as already observed. So, by the definition of
cumulation, β ∈ σ(A y (p ↔ q)), contradicting our definition of σ. So σ cannot
be cumulative.

Thus, the kernel contraction generated by σ is not cumulative, but by Theorem
2.5.12, that kernel contraction is saturated. �

Corollary. The class of saturated kernel contractions is not a subclass of the class of
cumulative kernel contractions. The class of saturated kernel contractions over theories
is not a subclass of the class of cumulative kernel contractions over theories.

In some sense, this is unsurprising. Kernel contractions fail to be cumulative
because their action is “too different” on inputs that are “too similar.” One
could hope that requiring them to respect closure via smoothness removed all
of these differences, but it is not so. Unfortunately, we also have the following.

Theorem 3.3.2. There is a cumulative kernel contraction on a theory which is not
saturated.

Proof. We will exhibit such a kernel contraction. Let p and q be logically in-
dependent beliefs, and suppose A = Cn({p, q}). Notice that we may define s
such that p < σ(A y (p ∧ q)) for σ the cumulation of s. (This is because p is
not equivalent to p ∧ q, thus {p} < A y (p ∧ q), so we may always select other
elements and ensure p is not selected.) Since {p ∧ p, q} ∈ A y (p ∧ q) as well,
we may define s such that p ∧ p ∈ σ(A y (p ∧ q)). But then σ is not smooth, as
{p} ` p ∧ p, but {p} ∧ σ(A y (p ∧ q)) = ∅. Thus, we have defined a σ which is
cumulative and not smooth (and thus not saturated, by Theorem 2.5.12). �

Corollary. The class of cumulative kernel contractions is not a subclass of the class of
saturated kernel contractions. The class of cumulative kernel contractions over theories
is not a subclass of the class of saturated kernel contractions over theories.

This is not that surprising either, though it is similarly unfortunate.

These two results establish that:
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1. The classes of saturated and cumulative kernel contractions are both strict
subclasses of the class of kernel contractions.

2. Neither class is a subclass of the other.

3. All of these relationships are preserved when we restrict our attention
exclusively to kernel contractions over theories.

Another question immediately comes to mind: are these classes (essentially)
disjoint? Of course there will be trivial contractions, say on Cn(∅), which
will be definable both as saturated and cumulative kernel contractions, but
the existence of nontrivial saturated cumulative kernel contractions must be
shown. We will see an example of such a contraction in the next section, as a
consequence of Theorem 3.4.2.

Where do safe contractions lie, given these results? One could hope that safe
contractions were saturated cumulative contractions, since they are by defini-
tion saturated kernel contractions, and they are the saturations of cumulative
kernel contractions. So, in essence, we may ask: does saturation preserve cu-
mulativity? I have been unable to get a full result, but the following lemma
reduces the question to whether or not we can construct an incision of a partic-
ular kind:

Lemma 3.3.3. Let ≈σ be a kernel contraction for a theory A, and let τ be an incision
function for A. Then τ generates ≈̂σ if and only if for all α, τ(A y α) = σ(A y
α) \ Cn(A ≈σ α).

Proof. Let A, ≈σ, and τ be as indicated. Notice that by Definition 2.5.3, τ
generates ≈̂σ if and only if for all α we have that A≈̂σα = A \ τ(A y α). So
our claim is that the above is equivalent to for all α that τ(A y α) = σ(A y
α) \Cn(A ≈σ α). It’s enough to show this holds for every individual α, so fix α.
The following are all equivalent:

τ(A y α) = σ(A y α) \ Cn(A ≈σ α)
A \ τ(A y α) = A \ (σ(A y α) \ Cn(A ≈σ α))
A \ τ(A y α) = (Cn(A ≈σ α) ∩ A) ∪ (A \ σ(A y α))
A \ τ(A y α) = (A ∩ Cn(A ≈σ α)) ∪ (A ≈σ α)
A \ τ(A y α) = A ∩ Cn(A ≈σ α)
A \ τ(A y α) = A≈̂σα

Line 1 is equivalent to line 2 as both τ(A y α) and σ(A y α) must be subsets of
A since they are incisions for A. Line 2 is equivalent to line 3 by a set theoretic
identity. Line 3 is equivalent to line 4 since A ≈σ α must be a subset of both
A and Cn(A ≈σ α) since kernel contraction satisfies success and Cn satisfies
monotonicity. The rest of the equivalences are by definition. �
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Using this lemma to show saturation preserves cumulativity would be an ex-
tremely fruitful result.

Remark 3.3.4. If for an incision σ which cumulates a ksf s we can define a ksf t
such that t is cumulated by the incision which takes value σ(A y α)\Cn(A ≈σ α)
for each α, then:

1. Saturation preserves cumulativity.

2. Safe contractions form a subclass of cumulative kernel contractions (they
form a subclass of saturated kernel contractions by definition).

3. Moreover, safe contractions form a strict subclass of cumulative kernel
contractions (since we know every safe contraction is saturated and not
all cumulative kernel contractions are saturated).

4. In fact, safe contractions form a subclass of saturated cumulative kernel
contractions.

5. All of the above relationships hold when we restrict our attention to kernel
contractions over theories.

This is perhaps the open question with the most immediate and interesting
consequences that my research has uncovered.

The above remark mentions that safe contractions would form a (strict, in fact)
subclass of cumulative kernel contractions if saturation preserves cumulativity.
I also investigated the relationship between safety and cumulativity separately,
which is the subject of the next section.

3.4 Relational cumulative kernel contractions

Safe contractions are saturations of cumulative kernel contractions which are
based on hierarchies. At first glance, it might seem that the cumulation, rather
than the relation, is doing all the work since the requirement of finite acyclicity
is so weak. As previously noted, finite acyclicity is required so that the relation
actually generates a ksf; to generate a ksf from a relation ≺ at least one element
must be ≺-minimal in each inclusion-minimal set which implies a sentence. By
compactness, every-inclusion minimal set which implies a sentence is finite, so
if there are no finite cycles, every set must have a ≺-minimal element.

Of course, only some sets will be inclusion-minimal; the elements of those sets
are all independent. Therefore, we could have weakened the definition of a
hierarchy to have no cycles among independent elements, as seen below.

Lemma 3.4.1. Let s be a ksf for a set A. Then any relation on which s is based has no
cycles among independent elements of A.
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Proof. Let A and s be as indicated. Let ≺ be a relation such that s is based on ≺.
Suppose for contradiction there are α1, . . . , αn all independent beliefs such that
α1 ≺ · · · ≺ αn ≺ α1. Notice that as they are all independent, {α1, . . . , αn} ∈ A y
(α1 ∧ · · · ∧ αn). Thus, since s is a ksf and that set is nonempty, s({α1, . . . , αn}) , ∅.
But since s is based on ≺, s({α1, . . . , αn}) = ∅ by Definition 2.5.15. This is a
contradiction, so there can be no such α1, . . . , αn. �

Corollary. s is a relational ksf for a set A if and only if s is based on a relation ≺ on A
which has no cycles among independent elements of A.

Notice that the structure of the proof critically depends on the fact that the ele-
ments in question are independent of one another. One cannot derive the same
contradiction if the elements are dependent. Yet even the weak requirements
placed on hierarchies do restrict the behavior of contractions.

Theorem 3.4.2. There is a smooth and cumulative kernel contraction for a theory
which is not based on a hierarchy.

Proof. We will construct the incision on which this contraction is based. Let
p, q, r be logically independent beliefs and let A = Cn({p, q, r}). Let σ be an
incision function for A such that:

p < σ(A y (p ∧ q))
q < σ(A y (q ∧ r))
r < σ(A y (p ∧ r))

We can do this while preserving smoothness as if the consequences of p (resp.
q and r) are not in σ(A y (p ∧ q)) (resp. the corresponding incisions for q ∧ r
and p ∧ r) then there will be no elements present which are entailed by the
singleton {p} (resp. {q} and {r}), and thus we may maintain smoothness without
the presence of p (resp. q and r).

We can do this while preserving cumulativity because no set will be a member
of the kernel set of any two of p ∧ q, q ∧ r, and p ∧ r by the assumption of
independence. So there will clearly be ksfs which this cumulates.

However, any ksf which is cumulated by this incision cannot be based on a
hierarchy, as we have that for any such ksf s:

s({p, q}) = {q}
s({q, r}) = {r}
s({p, r}) = {p}

This is so because clearly each of these doubletons is present in the entailment
set for the incisions above, so the value of the ksf applied to them must be
nonempty and cannot include the other element.

But then any ≺ on which this ksf is based must be such that p ≺ r ≺ q ≺ p,
contradicting acyclicity, and thus must not be a hierarchy. Therefore, σ cannot
be based on a hierarchy. �
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Corollary. The class of presafe contractions is a strict subclass of the class of cumulative
kernel contractions. The class of saturated presafe contractions is a strict subclass of
the class of saturated cumulative kernel contractions. Both of these relationships are
preserved if we restrict our attention to kernel contractions over theories.

This also implies that the class of save contractions over theories is a strict
subclass of the class of smooth kernel contractions, and thus of the partial meet
contractions. Therefore, safe contractions over theories cannot be characterized
by the basic Gärdenfors postulates.

Even more distressingly:

Theorem 3.4.3. There is a smooth and cumulative incision for a theory which is not
based on any relation.

Proof. In the proof of the above Theorem 3.4.2, we constructed a ksf such that
any relation which that ksf is based on must have a cycle, and thus cannot be a
hierarchy. However, by Theorem 3.4.1, if a ksf is based on a relation, then that
relation has no cycles among independent elements. The elements used in the
above proof are independent, thus, that ksf is not based on any relation. �

Corollary. The class of relational cumulative kernel contractions is a strict subclass of
the class of cumulative kernel contractions. The class of saturated relational cumulative
kernel contractions is a strict subclass of the class of the saturated cumulative kernel
contractions. Both of these relationships are preserved if we restrict our attention to
kernel contractions over theories.

Last section, we saw that the classes of saturated kernel and cumulative kernel
contractions were strict subsets of the class of kernel contractions, and nei-
ther were subsets of each other (and these relationships were preserved over
theories). Now it is clear also that they have a nonempty intersection, and
that the classes of relational cumulative kernel and presafe contractions are
successively more restrictive subclasses of cumulative kernel contractions, and
saturated relational cumulative kernel and safe contractions are successively
more restrictive subclasses of saturated kernel contractions.

What about the relationship between saturation and hierarchies? One could
hope that at least the incisions generated by hierarchies were well-behaved,
and that the saturation step in the definition was superfluous. However, it
turns out to be wholly necessary:

Theorem 3.4.4. There is a presafe contraction for a theory which is not smooth.

Proof. We will construct the incision on which the presafe contraction is based.
Let p, q, r be logically independent beliefs and let A = Cn({p, q, r}). Let ≺ be a
hierarchy for A such that r ≺ r → q, r → q ≺ p → r, and r → q ≺ p. (None
of these are equivalent by assumption, so we may assume that the rest of ≺ is
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defined such that it is acyclic and intersubstitutive.) Let s be a ksf based on ≺,
and let σ be the cumulation of s.

Clearly {p, p → r} ⊆ A, and {p, p → r} ` r. Also, clearly r ∈ σ(A y (p → q)) as
{r, r → q} ∈ A y (p → q) and r ≺ r → q. But {p, p → r} ∩ σ(A y (p → q)) = ∅,
as any element of A y (p → q) containing p and p → r must contain r → q,
and thus neither p nor p → r will be selected for removal as r → q ≺ p and
r→ q ≺ p→ r.

This contradicts the definition of smoothness, so σ is not smooth. �

Corollary. If saturation preserves being based on a hierarchy, the class of safe contrac-
tions is a strict subclass of the class of presafe contractions. This relationship would be
preserved when restricting our attention to kernel contractions over theories.

The situation is then extremely complex. Every piece in the definition of safe
contractions within the kernel contraction framework does some work: the fact
that the ksf is based on a hierarchy restricts its behavior, the fact that the incision
is cumulative restricts its behavior further, and the fact that the contraction is
then saturated even further restricts its behavior.

Let us turn our attention now to the relationship between safe contraction and
the supplementary postulates.

3.5 Safety, theories, and overlap

There are interesting connections between safe contractions and the supplemen-
tary postulates, as first explored in Theorem 2.4.9 due to Hans Rott. However,
via a lemma noticed (in a different form) even by Alchourrón and Makinson, in-
cisions based on hierarchies have a property very close to conjunctive overlap.
I developed this very slightly, giving the result below:

Theorem 3.5.1. If ÷ is a presafe contraction, then it satisfies conjunctive overlap.

Proof. Let A be set, and let ≺ be a hierarchy on A. Let σ be the incision function
based on ≺. The first below line is given by a lemma in [4], and the following
lines are equivalent to it by set theory and definition:

σ(A y (α ∧ β)) ⊆ σ(A y α) ∪ σ(A y β)
A \ (σ(A y α) ∪ σ(A y β)) ⊆ A \ σ(A y (α ∧ β))

(A \ σ(A y α)) ∩ (A \ σ(A y β)) ⊆ A ≈σ (α ∧ β)
(A ≈σ α) ∩ (A ≈σ β) ⊆ A ≈σ (α ∧ β)

Thus, ≈σ satisfies conjunctive overlap, as required. �
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The presafe contraction which is saturated to become a safe contraction must
satisfy conjunctive overlap. However, it is not clear whether or not its saturation
must: it may be the case that saturating A ≈σ α and saturating A ≈σ β yields
beliefs not present in the saturation of their intersection. In any case, I have not
been able to find a completely straightforward extension of the above result to
saturations. Instead, there is the following.

Lemma 3.5.2. If ≈σ is a kernel contraction for a theory A that satisfies closure and
conjunctive overlap, then its saturation ≈̂σ satisfies conjunctive overlap.

Proof. Let A be a theory, and ≈σ be a kernel contraction for A satisfying closure
and conjunctive overlap. Let beliefs α and β be given. Consider A≈̂σα and
A≈̂σβ. By set theory and definitions:

(A≈̂σα) ∩ (A≈̂σβ) = (A ∩ Cn(A ≈σ α)) ∩ (A ∩ Cn(A ≈σ β))
= A ∩ (Cn(A ≈σ α) ∩ Cn(A ≈σ β))
= A ∩ Cn(A ≈σ α ∩ A ≈σ β)

The last step is the step where the requirement of closure (and thus also that A
is a theory) is used. Further, notice that, since conjunctive overlap is satisfied,
we can do the following:

A ≈σ α ∩ A ≈σ β ⊆ A ≈σ (α ∧ β)
Cn(A ≈σ α ∩ A ≈σ β) ⊆ Cn(A ≈σ (α ∧ β))

A ∩ Cn(A ≈σ α ∩ A ≈σ β) ⊆ A ∩ Cn(A ≈σ (α ∧ β))
A ∩ Cn(A ≈σ α ∩ A ≈σ β) ⊆ A≈̂σ(α ∧ β)

Putting both arguments together, we get that ≈̂σ satisfies conjunctive overlap,
as required. �

Corollary. If presafe contractions over theories satisfy closure, then all safe contrac-
tions over theories satisfy conjunctive overlap.

This is an interesting almost-result. Unfortunately, its extension to the real
desideratum turns out to be impossible.

Lemma 3.5.3. There is a presafe contraction for a theory which fails to satisfy closure.

Proof. By Theorem 3.4.4, there is a presafe contraction on a theory which is not
a smooth kernel contraction. Therefore, since smooth kernel contractions on
theories are characterized exactly by the basic Gärdenfors postulates, which
include closure, there is a presafe contraction on a theory which fails to satisfy
closure. �

There may be a way to modify this technique to no longer require closure
and achieve the desired result, but it seems doubtful. Conjunctive overlap is
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tantalizingly close for safe contractions, but it seems that they need continuing-
up or continuing-down to avoid adding undesirable beliefs to contractions of
conjuncts in the saturation step, as seen in Theorem 2.4.6.



Chapter 4

Conclusions

To recap, we have seen that every step in the construction of safe contractions
in the kernel contraction framework is crucial: there is a saturated kernel
contraction which is not cumulative, there is a saturated cumulative kernel
contraction which is not based on a hierarchy, and there is a cumulative kernel
contraction based on a hierarchy which is not saturated. We have also seen that
although safe contractions form a subclass of partial meet contractions in the
case of theories, this relationship is not present in the general case. Also, even
in the case of theories, this relationship is strict and we cannot hope to reverse
it to provide a characterization.

Along the way, I have isolated the classes of cumulative, relational cumulative,
and presafe contractions (and their saturations), which have not been studied
in the literature thus far (excepting of course the saturations of presafe contrac-
tions, which are safe contractions by definition). These have complex behavior,
and are worthy of further study.

At this point, it is worthwhile to summarize all the characterization results
known thus far. I shall list all the relationships which are known, from the
largest classes to the smallest.

First, for the simpler case of contractions over theories. We will focus only on
saturated classes, since only then are we guaranteed closure.

1. Smooth kernel contractions, saturated kernel contractions, partial meet
contractions, and basic entrenchment contractions are equivalent and
characterized by the basic Gärdenfors postulates.

2. Saturated cumulative kernel contractions are a strict subclass of the satu-
rated kernel contractions, no characterization result is known.

3. Saturated relational cumulative kernel contractions are a strict subclass of
the saturated cumulative kernel contractions, no characterization result
is known.

41
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4. Safe contractions are a strict subclass of the saturated relational cumula-
tive kernel contractions, no characterization result is known.

5. Regular and virtually connected safe contractions, transitively relational
partial meet contractions, and entrenchment contractions are all equiva-
lent, characterized by the basic and supplementary Gärdenfors postulates,
and a strict subclass of the safe contractions.

The situation only worsens in the case of contractions over arbitrary sets. Very
few of these classes have characterization results, so I will only note when they
do.

1. Kernel contractions are the largest class, and are characterized by success,
inclusion, uniformity, and core-retainment.

2. Smooth kernel contractions and saturated kernel contractions are equiva-
lent and characterized by success, inclusion, uniformity, core-retainment,
and relative closure, and are a strict subclass of the kernel contractions.

3. Cumulative kernel contractions are a strict subclass of the kernel contrac-
tions.

4. Relational cumulative kernel contractions are a strict subclass of the cu-
mulative kernel contractions.

5. Presafe contractions are a strict subclass of the relational cumulative ker-
nel contractions.

6. Saturating the above three classes preserves their relationships: saturated
cumulative contractions are a strict superclass of the saturated relational
cumulative contractions which are a strict superclass of the safe contrac-
tions.

7. Regular and virtually connected safe contractions are a strict subclass of
the safe contractions.

8. Partial meet contractions are characterized by success, inclusion, uni-
formity, and relevance, and are a strict subclass of the smooth kernel
contractions.

9. Transitively maximizingly relational partial meet contractions are a strict
subclass of the partial meet contractions.

We have also seen an early indication that conjunctive overlap does not hold
for all safe contractions, and that not all safe contractions are intersubstitutive.
There are now many more relationships which still have yet to be shown.

Several important questions have been raised here. In a rough order of impor-
tance, they are:
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1. Does saturation preserve cumulativity? (It seems likely, using Lemma
3.3.3.)

2. Does saturation preserve being based on a hierarchy (i.e. are the safe
contractions exactly the saturated presafe contractions)?

3. Does saturation of presafe contractions preserve conjunctive overlap,
even when they fail to satisfy closure? (It seems unlikely, as described in
Section 3.5, but a counterexample should be found.)

4. Are all safe contractions intersubstitutive safe contractions? (Presumably
not, at least for arbitrary sets, as discussed in Section 3.1, but a counterex-
ample is needed.)

5. Does Makinson’s worry about revision equivalence apply to safe contrac-
tions? (See Section 2.4.2.)

Returning to the original project, though, it is clear that we will have to take
a different approach in order to characterize safe contraction. A postulate is
neeeded which is reasonably strong and which is “relational” like the supple-
mentary postulates are, but which does not entail them. Notice that we have
also demonstrated that the basic postulates are not sufficient to characterize
cumulative kernel contractions; it would be good to find a characterization.
Combined with saturation preserving cumulativity, this would give us addi-
tional postulates that safe contractions all satisfy.

In any case, the kernel contraction framework and its subclasses has been shown
to be the most complex situation in AGM theory by far. It is clear there is still
much work to be done in this area.
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